Editing Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 104: Line 104:
 
Thus, along with the development of societal need for climate action, scientific communities and industrial companies need to take significant efforts to ensure proper measurements and quantifications of GHG fluxes. Current environmental legislation in most-economically developed countries prescribe large emitters to submit an annual emissions report. The data about the emissions can be collected following two main paths. The companies may (1) estimate the emissions based on inventories (typically exemplified by UNFCC reporting and constitutes the basis of INDC in the frame of the Paris agreement), or (2) perform GHG concentration monitoring by means of instruments or sensors combined with inverse modelling to retrieve GHG fluxes (now admitted in the discussion as per UNFCCC methodology<ref>http://unfccc.int/resource/docs/2017/sbsta/eng/l21.pdf</ref>. Inventory approaches are widely used nowadays, because they are relatively cheap and do not require complicated installations or service. On the other hand, direct measurements of produced GHG concentration by means of special sensors are highly precise but the finally retrieved GHG fluxes values may have a high uncertainty due to inverse modelling. Assuming that environmental regulations in the EU and worldwide are getting stricter, one can see the instrumental measurements of GHG as the target that GHG producers shall aim. In truth, producers of GHG shall be genuinely interested in accurate measurements of GHG, because it will help them to cope with the strict environmental legislation in the future,reduceoperatingcosts,fuelconsumptionandwasteproduction,etc.
 
Thus, along with the development of societal need for climate action, scientific communities and industrial companies need to take significant efforts to ensure proper measurements and quantifications of GHG fluxes. Current environmental legislation in most-economically developed countries prescribe large emitters to submit an annual emissions report. The data about the emissions can be collected following two main paths. The companies may (1) estimate the emissions based on inventories (typically exemplified by UNFCC reporting and constitutes the basis of INDC in the frame of the Paris agreement), or (2) perform GHG concentration monitoring by means of instruments or sensors combined with inverse modelling to retrieve GHG fluxes (now admitted in the discussion as per UNFCCC methodology<ref>http://unfccc.int/resource/docs/2017/sbsta/eng/l21.pdf</ref>. Inventory approaches are widely used nowadays, because they are relatively cheap and do not require complicated installations or service. On the other hand, direct measurements of produced GHG concentration by means of special sensors are highly precise but the finally retrieved GHG fluxes values may have a high uncertainty due to inverse modelling. Assuming that environmental regulations in the EU and worldwide are getting stricter, one can see the instrumental measurements of GHG as the target that GHG producers shall aim. In truth, producers of GHG shall be genuinely interested in accurate measurements of GHG, because it will help them to cope with the strict environmental legislation in the future,reduceoperatingcosts,fuelconsumptionandwasteproduction,etc.
  
===2.1.2 Existing common techniques===
+
===2.1.2 Existing common techniques==
  
 
====2.1.2.1 Overview====
 
====2.1.2.1 Overview====
Line 511: Line 511:
 
====2.1.4.3 Market overview by the leading players====
 
====2.1.4.3 Market overview by the leading players====
  
In 2010, Chemical and Engineering news (Reisch 2010) asked the representatives of largest producers of GHG sensors about their vision of the market in the future and its size. The representatives of Fischer Scientific estimated the global market as 700 million USD; the estimate included the monitors of acid rain precursors and other pollutants such as lead, ozone and GHG. They said that the sales of GHG monitors could increase greatly if they were added to the governmental networks of ambient air quality monitoring stations. They added that measurements of GHG had only a small share of the market, but they expected the increase in the sales due to the changing legislations around the world. Li-COR Biosciences confirmed that they expected the tangential expansion of industrial markets. The company was strongly counting on their governmental and scientific customers, planning to sell several thousand high precision GHG monitors per year. Representatives of Shimadzu Scientific instruments agreed that academic customers were their main customers, but they also started the work to adapt their products for the industrial applications. Oppositely, Agilent technologies reported that their key customers were industrial players. They have developed their gas chromatograph for easy GHG analysis. Some other companies focused on the infrared absorption GHG measurements. For example, representatives of Picarro said that they were experiencing strong growth, selling their cavity-ring-down technologies to 47 countries around the world. Another instrument maker Los Gatos sold several hundred instruments to measure the CO2 and methane emissions. Los Gatos owns its own CRDS technology. They worked with several large partners like General Electric to deploy their instruments at several industrial facilities. Additional contender, Tiger Optics, claimed to sell over 800 instruments for monitoring industrial gas quality.
+
In 2010, Chemical and Engineering news (Reisch 2010) asked the representatives of largest producers of GHG sensors about their vision of the market in the future and its size. The representatives of Fischer Scientific estimated the global market as 700 million USD; the estimate included the monitors of acid rain precursors and other pollutants such as lead, ozone and GHG. They said that the sales of GHG monitors could increase greatly if they were added to the governmental networks of ambient air quality monitoring stations. They added that measurements of GHG had only a small share of the market, but they expected the increase in the sales due to the changing legislations around the world. Li-COR Biosciences confirmed that they expected the tangential expansion of industrial markets. The company was strongly counting on their governmental and scientific customers, planning to sell several thousand high precision GHG monitors per year. Representatives of Shimadzu Scientific instruments agreed that academic customers were their main customers, but they also started the work to adapt their products for the industrial applications. Oppositely, Agilent technologies reported that their key customers were industrial players. They have developed their gas chromatograph for easy GHG analysis. Some other companies focused on the infrared absorption GHG measurements. For example, representatives of Picarro said that they were experiencing strong growth, selling their cavity-ring-down technologies to 47 countries around the world. Another instrument maker Los Gatos sold several hundred instruments to measure the CO2 and methane emissions. Los Gatos owns its own CRDS technology. They worked with several large partners like General Electric to deploy their instruments at several industrial facilities. Additional contender, Tiger Optics, claimed to sell over 800 instruments for monitoring industrial gas quality.  
  
 
==2.2 Measurement of atmospheric aerosols==
 
==2.2 Measurement of atmospheric aerosols==

Please note that all contributions to may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Templates used on this page: