Editing Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1,623: Line 1,623:
 
UAVs play an important role in gas sensing, especially in the remote areas or areas with limited accessibility. For example, drones are widely used to perform measurements of volcanic gases. Thus, McGonigle et al. (2008) carried out measurements of volcanic gases at la Fossa volcano crater in Italy. They used the UAV helicopter capable of 12 minutes flight time and equipped with the ultraviolet and infrared spectrometers for SO2 and CO2 measurements. Khan et al. 2012 developed a greenhouse gas analyser for the installation on the helicopter UAV, using a vertical cavity surface emitting laser (VCSEL) for these purposes. Watai et al. (2005) mounted NDIR sensing system on UAV to monitor atmospheric CO2. Authors designed economic and accurate gas sensor and performed several flight tests with the payload of 3.5 kg and operation time of no longer than 1 hour. While WSNs are usually equipped with MOX sensors as was discussed above, UAV mostly apply optical sensing devices. Malaver, Motta et al. (2015) performed analysis of applications of both MOX and optical devices to integrate both sensing technologies at both platforms and reduce the costs. The table presented in this study is shown below.
 
UAVs play an important role in gas sensing, especially in the remote areas or areas with limited accessibility. For example, drones are widely used to perform measurements of volcanic gases. Thus, McGonigle et al. (2008) carried out measurements of volcanic gases at la Fossa volcano crater in Italy. They used the UAV helicopter capable of 12 minutes flight time and equipped with the ultraviolet and infrared spectrometers for SO2 and CO2 measurements. Khan et al. 2012 developed a greenhouse gas analyser for the installation on the helicopter UAV, using a vertical cavity surface emitting laser (VCSEL) for these purposes. Watai et al. (2005) mounted NDIR sensing system on UAV to monitor atmospheric CO2. Authors designed economic and accurate gas sensor and performed several flight tests with the payload of 3.5 kg and operation time of no longer than 1 hour. While WSNs are usually equipped with MOX sensors as was discussed above, UAV mostly apply optical sensing devices. Malaver, Motta et al. (2015) performed analysis of applications of both MOX and optical devices to integrate both sensing technologies at both platforms and reduce the costs. The table presented in this study is shown below.
  
<div class="tablecaption" id="table58">TABLE 58 ADVANTAGES AND DISADVANTAGES OF MOX AND OPTICAL SENSORS FOR GHG MEASUREMENTS ACCORDING TO MALAVER, MOTTA ET AL. (2015)</div>
+
TABLE 58 ADVANTAGES AND DISADVANTAGES OF MOX AND OPTICAL SENSORS FOR GHG MEASUREMENTS ACCORDING TO MALAVER, MOTTA ET AL. (2015)
 +
 
 +
UAVs or drones are relatively new measurement platforms that have been used in most of the countries with strong climate research programs. Their great advantage is that they can be used in the conditions where presence of human is not desirable or not possible. These platforms are represented by the machines of diverse constructions and capabilities. Based on the ability to perform the measurements, UAV can be divided into following groups:
 +
 
 +
* LALE (Low Altitude Long Endurance)
 +
* MALE (Medium Altitude Long Endurance)
 +
* HALE (High Altitude Long Endurance)
 +
* LAME (Low Altitude Medium Endurance)
 +
 
 +
The weight of drones can vary from 500 g to nearly 15 tons, while the time of autonomous activity varies from several minutes to several days. The price of drones may vary from several hundred euro (dollars) to several millions in case large autonomous machines are utilized. Integration of instrumentation on this platform also appears as non-trivial task, because the instruments shall be light and well balanced on the platform. They also shall have the possibility for wireless communication (GPS, IRIDIUM, GLONASS) and data transfer. Environmental parameters that can be measured by means of UAVs include temperature, pressure, humidity and wind parameters. Drones can also be equipped with visible and IR cameras, laser altimetry and multispectral imagery. In the future, various gas and aerosol analysers will be developed for the installation on this platform. The potential of drones includes measurements in remote locations, routine long-term measurements, measurement campaigns and validation of information obtained from satellites.
 +
Most of UAV systems find their application in the projects of the economically developed countries. However, these countries are not responsible for global pollution in the same extent as many developing countries, where people lack to take care of the environment due to the constant fight for their wellbeing. In these countries, the health of population is often under strike due to decreasing quality of water and air resources. Cost-effective drones can be used in these countries to sample and monitor water quality, composition of atmosphere and climate patterns.
 +
 
 +
<div class="tablecaption" id="table59">TABLE 59 STRENGTHS AND LIMITATIONS OF UAVS</div>
 
{| class="wikitable"
 
{| class="wikitable"
 
! rowspan="2" scope="col" | Category
 
! rowspan="2" scope="col" | Category
Line 1,675: Line 1,687:
 
| Low for NDIR modules
 
| Low for NDIR modules
 
| Medium too high for complex systems
 
| Medium too high for complex systems
|}
 
 
UAVs or drones are relatively new measurement platforms that have been used in most of the countries with strong climate research programs. Their great advantage is that they can be used in the conditions where presence of human is not desirable or not possible. These platforms are represented by the machines of diverse constructions and capabilities. Based on the ability to perform the measurements, UAV can be divided into following groups:
 
 
* LALE (Low Altitude Long Endurance)
 
* MALE (Medium Altitude Long Endurance)
 
* HALE (High Altitude Long Endurance)
 
* LAME (Low Altitude Medium Endurance)
 
 
The weight of drones can vary from 500 g to nearly 15 tons, while the time of autonomous activity varies from several minutes to several days. The price of drones may vary from several hundred euro (dollars) to several millions in case large autonomous machines are utilized. Integration of instrumentation on this platform also appears as non-trivial task, because the instruments shall be light and well balanced on the platform. They also shall have the possibility for wireless communication (GPS, IRIDIUM, GLONASS) and data transfer. Environmental parameters that can be measured by means of UAVs include temperature, pressure, humidity and wind parameters. Drones can also be equipped with visible and IR cameras, laser altimetry and multispectral imagery. In the future, various gas and aerosol analysers will be developed for the installation on this platform. The potential of drones includes measurements in remote locations, routine long-term measurements, measurement campaigns and validation of information obtained from satellites.
 
Most of UAV systems find their application in the projects of the economically developed countries. However, these countries are not responsible for global pollution in the same extent as many developing countries, where people lack to take care of the environment due to the constant fight for their wellbeing. In these countries, the health of population is often under strike due to decreasing quality of water and air resources. Cost-effective drones can be used in these countries to sample and monitor water quality, composition of atmosphere and climate patterns.
 
 
<div class="tablecaption" id="table59">TABLE 59 STRENGTHS AND LIMITATIONS OF UAVS</div>
 
{| class="wikitable"
 
! scope="row" | Strengths
 
! scope="row" | Limitations
 
|-
 
! scope="row" | Eco-friendly if battery powered
 
| Special person required for navigation
 
|-
 
! scope="row" | Silent, not disturbing nature
 
| Special person required for the interpretation of the results
 
|-
 
! scope="row" | Cheap versions available
 
| Agreed air path is required
 
|-
 
! scope="row" | Can fly in remote areas
 
| Unmanned technology is taken as a threat
 
|-
 
! scope="row" | Can collect results on routine basis for a long time
 
| Can be hacked
 
 
|}
 
|}
  

Please note that all contributions to may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Templates used on this page: