Editing Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 937: Line 937:
 
This technique is employed to measure exchanges between the surface (i.e.: ecosystem, including vegetation and soil) and the atmosphere.
 
This technique is employed to measure exchanges between the surface (i.e.: ecosystem, including vegetation and soil) and the atmosphere.
  
<div class="figure" id="figure2">[[File:ENVRIplus D1.1-Fig. 2-Eddy covariance technique on-site.png|center|frame|Figure 2: Eddy co-variance technique on-site]]</div>
+
FIGURE 2 EDDY-COVARIANCE TECHNIQUE ON-SITE
  
 
It can be used, for example, to measure how much a given surface is either a sink or a source for a greenhouse gas such as CO2 or any other species that can be sampled with a sufficiently fast time response. The technique is based on fast (10 Hz or more) measurements of both three dimensional wind velocity (atmospheric turbulence, usually done through an ultrasonic anemometer) and atmospheric concentration of the chemical species of interests (generally CO2, CH4 and N2O in addition to energy). These two measurements can be related together following a specific mathematical approach to yield a flux with a high temporal resolution and integrated at ecosystem scale (1 km2).  
 
It can be used, for example, to measure how much a given surface is either a sink or a source for a greenhouse gas such as CO2 or any other species that can be sampled with a sufficiently fast time response. The technique is based on fast (10 Hz or more) measurements of both three dimensional wind velocity (atmospheric turbulence, usually done through an ultrasonic anemometer) and atmospheric concentration of the chemical species of interests (generally CO2, CH4 and N2O in addition to energy). These two measurements can be related together following a specific mathematical approach to yield a flux with a high temporal resolution and integrated at ecosystem scale (1 km2).  

Please note that all contributions to may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Templates used on this page: