Editing Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1,190: Line 1,190:
 
Optical sensors operate based on the principle of fluorescence quenching (Tengberg et al. 2006). Nowadays, the Aanderaa optodes 3835 & 4330 are the most used sensors implemented in ARGO floats, gliders and on moorings. Oxygen optodes are based on the oxygen luminescence quenching of a platinum porphyrin complex (fluorescent indicator) that is immobilized in a sensing foil. Optodes show a nonlinear decrease in luminescence decay time with increasing oxygen concentration. The signal can be linearized by means of the Stern–Volmer equation: [O2] = (τ0/τ – 1)/Ksv, where [O2] is oxygen concentration in μmol/L, τ is luminescence decay time, τ0 is the decay time in the absence of [O2], and Ksv is the Stern– Volmer constant (Demas et al. 1999). The advantages of the optical sensors are their excellent long-term stability and high precision. They also appear to be accurate provided they have sufficient time to come into equilibrium with the surrounding temperature and oxygen concentration and provided that their temperature response has been carefully calibrated (possibly by individual sensor factory-calibration plus in-situ calibration check/correction based on concomitant Winkler profile).
 
Optical sensors operate based on the principle of fluorescence quenching (Tengberg et al. 2006). Nowadays, the Aanderaa optodes 3835 & 4330 are the most used sensors implemented in ARGO floats, gliders and on moorings. Oxygen optodes are based on the oxygen luminescence quenching of a platinum porphyrin complex (fluorescent indicator) that is immobilized in a sensing foil. Optodes show a nonlinear decrease in luminescence decay time with increasing oxygen concentration. The signal can be linearized by means of the Stern–Volmer equation: [O2] = (τ0/τ – 1)/Ksv, where [O2] is oxygen concentration in μmol/L, τ is luminescence decay time, τ0 is the decay time in the absence of [O2], and Ksv is the Stern– Volmer constant (Demas et al. 1999). The advantages of the optical sensors are their excellent long-term stability and high precision. They also appear to be accurate provided they have sufficient time to come into equilibrium with the surrounding temperature and oxygen concentration and provided that their temperature response has been carefully calibrated (possibly by individual sensor factory-calibration plus in-situ calibration check/correction based on concomitant Winkler profile).
  
=====4.2.3.2.1 The Aanderaa optode sensors 3830-3835=====
+
=====4.2.3.2.1 TheAanderaaoptodesensors3830-3835=====
  
 
This sensors have a measuring range of 0-500 μM, a resolution of 1 μM and an accuracy of 5 μM as well as an operating depth of up to 6000 m. Due to their small size and power requirements, the first generation of optode sensors (3830/3835) have been also tested on profiling floats (Kortzinger et al. 2005). The first results obtained in 2004 demonstrated that high quality long-term oxygen measurements from ARGO floats are feasible.
 
This sensors have a measuring range of 0-500 μM, a resolution of 1 μM and an accuracy of 5 μM as well as an operating depth of up to 6000 m. Due to their small size and power requirements, the first generation of optode sensors (3830/3835) have been also tested on profiling floats (Kortzinger et al. 2005). The first results obtained in 2004 demonstrated that high quality long-term oxygen measurements from ARGO floats are feasible.
  
<div class="figure" id="figure3">[[File:ENVRIplus D1.1-Fig. 3-The Aanderaa optode sensor on a provor float.png|center|frame|Figure 3: The Aanderaa optode sensor on a provor float]]</div>
+
FIGURE 3 THE AANDERAA OPTODE SENSOR ON A PROVOR FLOAT
  
 
=====4.2.3.2.2 The SBE 63 sensor=====
 
=====4.2.3.2.2 The SBE 63 sensor=====

Please note that all contributions to may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Templates used on this page: