Editing Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 6: Line 6:
 
| submission-date = 2018-10-09
 
| submission-date = 2018-10-09
 
| type = Report
 
| type = Report
| url = https://mediawiki.envri.eu/images/0/05/D1.1._Roadmap_for_the_emergence_of_European_industry_providers_and_market_landscape_analysis.pdf
+
| pdf =
 +
| zenodo =
 +
| url = http://www.envriplus.eu/wp-content/uploads/2018/10/D1.1-Emerging-technologies-emerging-markets-fostering-the-innovation-potential-of-research-infrastructures.pdf
 
}}
 
}}
 
The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms) that could be useful to, and benefit from, Research infrastructures (RIs) to realize and achieve their market potential. The task also aims to explore technical challenges, market barriers and ongoing initiatives related to these technologies. The deliverable D1.1 is tailored to be a source of inspiration for Small and Medium Enterprises (SMEs), while investigating new business opportunities, as well as for the EU bodies, pointing them the specific areas requiring additional attention and financing.
 
The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms) that could be useful to, and benefit from, Research infrastructures (RIs) to realize and achieve their market potential. The task also aims to explore technical challenges, market barriers and ongoing initiatives related to these technologies. The deliverable D1.1 is tailored to be a source of inspiration for Small and Medium Enterprises (SMEs), while investigating new business opportunities, as well as for the EU bodies, pointing them the specific areas requiring additional attention and financing.
Line 1,451: Line 1,453:
 
Platform innovation is one of the drivers of increasing capabilities of marine systems. It is a structuring point for the constitution of several RIs (EUROARGO - profiling floats, GROOM - gliders, EMSO - sea floor + water column fixed point observatories, EuroFLEETS - oceanographic vessels). Each RI needs to mobilize the providers to cope with its own specifications and at the same time to benefit from inter RI cooperation. In this respect, manufacturers of sensors have to adapt to niche markets with high commercial/manufacturing cost ratio. That is why there is a market tendency for the instruments to include several sensors (multiprobe instruments since the 90s, EMSO Generic Instrumentation Module in 2017 EGIM).
 
Platform innovation is one of the drivers of increasing capabilities of marine systems. It is a structuring point for the constitution of several RIs (EUROARGO - profiling floats, GROOM - gliders, EMSO - sea floor + water column fixed point observatories, EuroFLEETS - oceanographic vessels). Each RI needs to mobilize the providers to cope with its own specifications and at the same time to benefit from inter RI cooperation. In this respect, manufacturers of sensors have to adapt to niche markets with high commercial/manufacturing cost ratio. That is why there is a market tendency for the instruments to include several sensors (multiprobe instruments since the 90s, EMSO Generic Instrumentation Module in 2017 EGIM).
  
<div class="figure" id="figure6">[[File:ENVRIplus D1.1-Fig. 6-Multiparameter system for sea measurements.png|center|frame|Multiparameter system for sea measurements]]</div>
+
FIGURE 6 MULTIPARAMETER SYSTEM FOR SEA MEASUREMENTS
  
 
AUVs and Gliders (marine drones) use the aircraft concept of “pay load” to offer an interface to any sensor of the client. Research Infrastructures need a careful metrology approach (WP2 ENVRIPLUS) and an easy plug and play sensor interface policy (see WP1 Task 4 in ENVRIPLUS) to deal with this industrial structuration.
 
AUVs and Gliders (marine drones) use the aircraft concept of “pay load” to offer an interface to any sensor of the client. Research Infrastructures need a careful metrology approach (WP2 ENVRIPLUS) and an easy plug and play sensor interface policy (see WP1 Task 4 in ENVRIPLUS) to deal with this industrial structuration.
Line 1,718: Line 1,720:
 
Underwater Unmanned Autonomous Vehicles (gliders and other UAVs) are commonly used by oceanographers for research and monitoring of the physical and biogeochemical characteristics of the first 1000m of the ocean. The recently created GOOS program called “OceanGliders” (current web domain is http://www.ego-network.org) is gathering the major part of the worldwide gliders fleet and focuses its activity on the sustainable measurements of five Essential Ocean Variables (EOVs): temperature, salinity, chlorophyll a, oxygen and Coloured Dissolved Organic Matter (CDOM). Unless only these parameters are part of the network, many other sensors have been developed, integrated, tested and operationally deployed on AUVs such as passive acoustics, ADCP (current sensor), turbulence, hydrocarbonic sensor, nutrients, pH etc. Currently these sensors are not integrated in the network mainly for harmonized data management reasons but also because the technology is sporadically used by the community. The increasing capacities of gliders (depth, endurance and payload) and the relatively low cost of the technology, make it a very interesting tool for marine and maritime industries. Ocean gliders naturally complement existing elements of the GOOS with their utility on the continental slopes, ability to complete repeat surveys and resolve mesoscale oceanographic features such as fronts.
 
Underwater Unmanned Autonomous Vehicles (gliders and other UAVs) are commonly used by oceanographers for research and monitoring of the physical and biogeochemical characteristics of the first 1000m of the ocean. The recently created GOOS program called “OceanGliders” (current web domain is http://www.ego-network.org) is gathering the major part of the worldwide gliders fleet and focuses its activity on the sustainable measurements of five Essential Ocean Variables (EOVs): temperature, salinity, chlorophyll a, oxygen and Coloured Dissolved Organic Matter (CDOM). Unless only these parameters are part of the network, many other sensors have been developed, integrated, tested and operationally deployed on AUVs such as passive acoustics, ADCP (current sensor), turbulence, hydrocarbonic sensor, nutrients, pH etc. Currently these sensors are not integrated in the network mainly for harmonized data management reasons but also because the technology is sporadically used by the community. The increasing capacities of gliders (depth, endurance and payload) and the relatively low cost of the technology, make it a very interesting tool for marine and maritime industries. Ocean gliders naturally complement existing elements of the GOOS with their utility on the continental slopes, ability to complete repeat surveys and resolve mesoscale oceanographic features such as fronts.
  
<div class="figure" id="figure7"><gallery>
+
FIGURE 7 DRONES FOR UNDERWATER MEASUREMENTS: (A) SEA EXPLORER, (B) SEAGLIDER
File:ENVRIplus D1.1-Fig. 7A-Drones for underwater measurements, (A) Sea explorer, (B) Seaglider.png|(A) Sea explorer
 
File:ENVRIplus D1.1-Fig. 7B-Drones for underwater measurements, (A) Sea explorer, (B) Seaglider.png|(B) Seaglider]]
 
</gallery>
 
 
 
Figure 7: Drones for underwater measurements</div>
 
  
 
The European Glider Network is composed of about 100 platforms that are deployed in the Atlantic, Mediterranean Sea and Baltic Sea. It is important to precise that some of the European gliders are also deployed in non-European region for specific research purposes. The European Glider Network will certainly keep growing as many “new” laboratories are currently purchasing platforms (Ireland and Sweden for example).
 
The European Glider Network is composed of about 100 platforms that are deployed in the Atlantic, Mediterranean Sea and Baltic Sea. It is important to precise that some of the European gliders are also deployed in non-European region for specific research purposes. The European Glider Network will certainly keep growing as many “new” laboratories are currently purchasing platforms (Ireland and Sweden for example).
Line 1,760: Line 1,757:
 
As known from the ENVRIplus community, technologies for the energy supply are represented by solar cells (63%), wind and hydroturbines (4% each) and other solutions (29%). Thus, solar panels is by far the most used technology, used to provide energy for isolated sites. Figure 8 shows the diagram of usage of various power supply solutions for isolated scientific stations within ENVRIplus network.  
 
As known from the ENVRIplus community, technologies for the energy supply are represented by solar cells (63%), wind and hydroturbines (4% each) and other solutions (29%). Thus, solar panels is by far the most used technology, used to provide energy for isolated sites. Figure 8 shows the diagram of usage of various power supply solutions for isolated scientific stations within ENVRIplus network.  
  
<div class="figure" id="figure8">[[File:ENVRIplus D1.1-Fig. 8-Power supply systems. ENVRIplus WP 3.1 'Energy report', 2017.png|center|frame|Figure 8: Power supply systems. ENVRIplus WP 3.1 "Energy report" (2017)]]</div>
+
FIGURE 8 POWER SUPPLY SYSTEMS. ENVRIPLUS WP 3.1 "ENERGY REPORT", 2017
  
 
===7.2.1 Solar panels===
 
===7.2.1 Solar panels===
Line 1,787: Line 1,784:
 
Lead acid batteries, VRLA (Valve Regulated Lead Acid), with gel or AGM are, by far, the most used ones through the ENVRI RI community. They are especially widely used for terrestrial measurements. Figure 9 shows the distribution (%) among battery technologies used for the measurements at 27 scientific stations within ENVRI network. As can be seen, 69% are taken by the lead batteries and 23% by lithium batteries, while alkaline and other technologies represent 4% each.  
 
Lead acid batteries, VRLA (Valve Regulated Lead Acid), with gel or AGM are, by far, the most used ones through the ENVRI RI community. They are especially widely used for terrestrial measurements. Figure 9 shows the distribution (%) among battery technologies used for the measurements at 27 scientific stations within ENVRI network. As can be seen, 69% are taken by the lead batteries and 23% by lithium batteries, while alkaline and other technologies represent 4% each.  
  
<div class="figure" id="figure9">[[File:ENVRIplus D1.1-Fig. 9-Power storage systems. ENVRIplus WP 3.1 'Energy report', 2017.png|center|frame|Figure 9: Power storage systems. ENVRIplus WP 3.1 "Energy report" (2017)]]</div>
+
FIGURE 9 POWER STORAGE SYSTEMS. ENVRI+ WP3.1 "ENERGY REPORT", 2017
  
 
The biggest challenges of the batteries are that they need to face and run under very low temperatures, down to -20°C, and sometimes down to -40° to 50°C and be as light as possible. The weight of batteries is especially important when one considers their installation on drones. Light weight of the batteries allows larger amount of scientific equipment to be installed and, thus, is more desirable. Lithium batteries are currently the ones with the highest energy-to-weight ratio. That is why they are widely used for the environmental measurements within oceanic domain, and for the installation on drones. In the table 60 we summarize the companies providing technologies for the power supply and specify the type/ model of technology.  
 
The biggest challenges of the batteries are that they need to face and run under very low temperatures, down to -20°C, and sometimes down to -40° to 50°C and be as light as possible. The weight of batteries is especially important when one considers their installation on drones. Light weight of the batteries allows larger amount of scientific equipment to be installed and, thus, is more desirable. Lithium batteries are currently the ones with the highest energy-to-weight ratio. That is why they are widely used for the environmental measurements within oceanic domain, and for the installation on drones. In the table 60 we summarize the companies providing technologies for the power supply and specify the type/ model of technology.  
Line 1,880: Line 1,877:
 
The core of the scientific business dedicated to environmental measurements and climate change observations can be seen in interactions of producing companies with the consumers of their products. Such interactions are developed, facilitated, and actively promoted. However, these interactions are not always beneficial or successful due to the different views and capabilities of producers and consumers communities. Thus, producers do not always have the possibility to understand the needs of consumers due to the lack of communication or inability to dedicate the funds for the market research. This results in the production of low-functional, expensive devices and, consequently, decrease of companies revenues and incomes. At the same time, the end-users do not have the chance to explain the producers their needs and cannot afford purchasing expensive devices directly from them. Research infrastructures are the bodies that act as intermediates between producers of the technologies, their end-users and third parties, such as grant holders, providing benefits for all market players as shown below at figure 10.
 
The core of the scientific business dedicated to environmental measurements and climate change observations can be seen in interactions of producing companies with the consumers of their products. Such interactions are developed, facilitated, and actively promoted. However, these interactions are not always beneficial or successful due to the different views and capabilities of producers and consumers communities. Thus, producers do not always have the possibility to understand the needs of consumers due to the lack of communication or inability to dedicate the funds for the market research. This results in the production of low-functional, expensive devices and, consequently, decrease of companies revenues and incomes. At the same time, the end-users do not have the chance to explain the producers their needs and cannot afford purchasing expensive devices directly from them. Research infrastructures are the bodies that act as intermediates between producers of the technologies, their end-users and third parties, such as grant holders, providing benefits for all market players as shown below at figure 10.
  
<div class="figure" id="figure10">[[File:ENVRIplus D1.1-Fig. 10-Interactions of RIs with other participants in the market.png|center|frame|Interactions of RIs with other participants in the market]]</div>
+
FIGURE 10 INTERACTIONS OF RIS WITH OTHER PARTICIPANTS IN THE MARKET.
  
 
The arrows between the RI body and the companies represent:
 
The arrows between the RI body and the companies represent:
Line 1,951: Line 1,948:
 
On the way of development, technologies pass several stages. These stages are represented by the Technology Readiness Level (TRL) ranging from 1 to 9, where 1 refers to the least developed technology and 9 to the most developed one. Usually it is assumed, that technologies with the TRL from 1 to 5 are immature technologies, developed and worked on by individual scientists. Contrary, technologies with the TRL from 8 to 9 are mature technologies, ready to become commercial products. As can be noticed, technologies with the TRL 6-7 are in the intermediate state. In this stage they cannot be further developed with the capacities of scientists, as such development would require significant allocation of funds. At this intermediate stage, they are also unlikely to attract funds from the commercial sector, as the companies are not ready to invest in the technologies that will not bring the profit in the short-term perspective. TRL scale is illustrated in figure 11.
 
On the way of development, technologies pass several stages. These stages are represented by the Technology Readiness Level (TRL) ranging from 1 to 9, where 1 refers to the least developed technology and 9 to the most developed one. Usually it is assumed, that technologies with the TRL from 1 to 5 are immature technologies, developed and worked on by individual scientists. Contrary, technologies with the TRL from 8 to 9 are mature technologies, ready to become commercial products. As can be noticed, technologies with the TRL 6-7 are in the intermediate state. In this stage they cannot be further developed with the capacities of scientists, as such development would require significant allocation of funds. At this intermediate stage, they are also unlikely to attract funds from the commercial sector, as the companies are not ready to invest in the technologies that will not bring the profit in the short-term perspective. TRL scale is illustrated in figure 11.
  
<div class="figure" id="figure11">[[File:ENVRIplus D1.1-Fig. 11-Technology readiness level Axis (1-9) and stages of the technological product.png|center|frame|Technology readiness level Axis (1-9) and stages of the technological product]]</div>
+
FIGURE 11 TECHNOLOGY READINESS LEVEL AXIS (1-9) AND STAGED OF THE TECHNOLOGICAL PRODUCT.
  
 
RIs thus refer to the emerging technologies with the TRL from 6 to 7, to ensure that they will overpass the financial barrier and become the commercially successful technologies with the great potential of further development and improvement. Also RIs will target improvement of technologies, such as their miniaturization and bettering of precision, as these parameters can also be referred as innovation.
 
RIs thus refer to the emerging technologies with the TRL from 6 to 7, to ensure that they will overpass the financial barrier and become the commercially successful technologies with the great potential of further development and improvement. Also RIs will target improvement of technologies, such as their miniaturization and bettering of precision, as these parameters can also be referred as innovation.
Line 2,340: Line 2,337:
  
 
{{DocumentMetadata
 
{{DocumentMetadata
| url = https://mediawiki.envri.eu/images/b/bc/D1.1-Emerging-technologies-emerging-markets-fostering-the-innovation-potential-of-research-infrastructures.pdf
+
| url = http://www.envriplus.eu/wp-content/uploads/2018/10/D1.1-Emerging-technologies-emerging-markets-fostering-the-innovation-potential-of-research-infrastructures.pdf
 +
| pdf =
 +
| zenodo =
  
 
| project = ENVRIplus
 
| project = ENVRIplus
Line 2,403: Line 2,402:
 
<!-- Document type -->
 
<!-- Document type -->
 
[[Category:Report]]
 
[[Category:Report]]
<!--Domains-->
+
<!-- Relevant domains -->
[[Category:All domains]]
+
[[Category:Atmosphere]]
 +
[[Category:Ecosystem]]
 +
[[Category:Marine]]
 +
[[Category:Solid Earth]]
 
<!-- Keywords -->
 
<!-- Keywords -->
 
[[Category:Innovation]]
 
[[Category:Innovation]]

Please note that all contributions to may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

Templates used on this page: