Emerging technologies, emerging markets – fostering the innovation potential of research infrastructures

From
Jump to: navigation, search

1 Introduction

Societies are facing a number of environmental grand challenges (ENVRIplus WP 12) interlinking the four domains covered by ENVRIplus. The data provided by RIs through environmental observation is crucial in tackling these challenges. The present research supports this environmental monitoring role by facilitating the supply of novel measurement techniques, able to reinforce the role and impact of RIs.

1.1 Grand challenges

Climate change is a global issue caused by anthropogenic emissions of climate forcers, especially long lived greenhouse gases (GHG). Climate positive feedbacks take place in remote, vulnerable regional ecosystems (e.g. permafrost, Kuhry et al. 2013) mediated by GHGs are a major threat to be investigated and monitored over the long term. Air quality is another biggest issue. Human death associated to air pollution remain at significantly high levels. Ubiquitous aerosols result in complex effects on climate and in adverse health impacts. Further increase of temperatures cause the threat that Amazonian or Siberian forests become more vulnerable to fires. Changes in the environment include changes in the biosphere and, thus, the agriculture and food production (Parry et al. 2004). Due to droughts, most of the farmlands may turn into deserts, this would in turn challenge food security. Contrary to general belief, the agricultural activities will not be expanded to the northern regions in these conditions, because they will be limited with the poor land quality. Meat production, considered as one of the main sources of GHG, does not help to stabilize the situation, as it takes many plant-based nutrients to produce animal-based food. Monitoring environmental parameters of the oceans is another task of great importance. Ocean systems stay in close relation to the other domains and are heavily influenced by any changes of environmental parameters. Thus, rise of the average temperatures will shift the habitual areas of numerous fish species and may influence the procreation of others. Large concentrations of CO2 in the atmosphere above sea waters will decrease the solubility of oxygen in the water preventing sea animals from breathing. At the same time, dissolved CO2 can cause acidification of the water, preventing corals and other sea inhabitants from binding carbon and building shell structures.

1.2 Position of this work in the current landscape

Monitoring environmental parameters and climate change is a complex task which answers grand challenges. It is of crucial importance (Bell and Joseph 2018) for all countries and societies. Development of technologies for such monitoring is in huge demand and driven by numerous factors (fig.1). Among them are demand for the high quality of measurements and development of new types of measurements, reduction of measurements costs, necessity to control the pollution and avoiding the legislative responsibility for the contamination of the environment. Besides, there is a large societal demand based on the ongoing decrease of air, soil and water quality. Environmental monitoring is a complicated activity, because technical requirements for the innovative measurement platforms, systems and sensors can vary significantly across regions and domains. Such variations certainly create unwanted difficulties for the technology producers, especially small and medium enterprises (SMEs), due to their generally limited resources. European businesses are limited in their development in this field due to the inability to overcome the technological differences, to overview the possible paths for development of corresponding markets and to establish the contacts in-between research communities, technology producers and other supporting businesses. This deliverable of ENVRIplus[1] project serves to overpass mentioned difficulties of environmental measurements in Europe. It is aimed to help SMEs, scientific communities and other interested partners to establish fruitful, beneficial collaborations and to understand the possible vectors of development of European environmental measurements and monitoring.

FIGURE1FACTORSINFLUENCINGTHEDEVELOPMENTOFTECHNOLOGY

1.3 Approach of this work: methodology

The aim of ENVRIplus Deliverable 1.1 was to analyze and identify useful technologies (sensors and platform-related) for environmental observations and services with high potential of turning into profitable businesses with the help of Research infrastructures (RIs). The task also aimed to explore the challenges and barriers (technical and market) and initial initiatives in the area. The resulting Deliverable 1.1 shall act as a guideline for the SMEs, inspiring future development and production decisions, as well as for the EU and national decision makers and funding organizations, highlighting specific emerging areas.

The work on Deliverable 1.1 has started from the “white board” exercise in Prague (2015), where participants (all experts from RIs) have first time identified the measurement variables, critical for RIs, corresponding sensors, capable of measuring this variables and SMEs which could produce such sensors. This work has continued at ENVRI weeks until 2017, when the face-to-face meeting between RIs and SMEs was organized in Grenoble in the frame of the 1st EU Environmental Research Infrastructures–Industry Joint Innovation Partnering Forum. The participants (SMEs and RIs members) shared their vision on development of environmental sensors and data communication systems and defined their possible applications.

The deliverable itself has been outlined at a meeting of Theme, work package and task leaders (Ifremer and CEA), in Brest (October 2017), where they discussed the possible structure of the deliverable and its content, main measurement parameters to focus upon and the best ways to show inter-connections between RIs.

Further on, the structure of current deliverable was proposed and discussed at the ENVRIplus meeting in Malaga, Spain, during November 2017. Participants from various RIs agreed on “domain” structure of the document, meaning that the important environmental parameters and technologies for their measurements were sorted by four domains (Atmosphere, Biosphere, Hydrosphere and Solid Earth). In addition, participants decided to add the “market” section to the document, where economy-related questions could have been discussed, such as RIs being innovative partners and contributors to the new technologies, promotion of businesses and market demands. This chapter was meant to provide the relation to the ENVRIplus WP18, “Liaison to users: industry, innovation economics” and identify existing and new user communities interested in application of novel environmental technologies. The timelines for the deliverable preparation and submission were discussed too.

After ENVRIplus meeting in Malaga, the task leader, CEA, presented its vision of the document by practical example, referring to the emerging technologies, relevant for measurements of GHG. This section was chosen by CEA as participant to ENVRIplus on behalf of ICOS. With this piece of work, authors have approached numerous instrumentation experts to know their opinion about existing and emerging technologies for environmental measurements with high potential. Among these experts were the specialists from atmospheric (ICOS, IAGOS, SIOS, ACTRIS) marine (EURO-ARGO, JERICO), ecosystem / biosphere (ANAEE) and solid earth (EPOS) domains. Participants were offered to follow the structure of the document proposed by the task leader and to write similarly about the technologies of interest for their RIs. Besides that, the discussions have touched the important points of availability of new platforms for sensors installations, power supplies for the sensors and international market development of environmental monitoring instrumentation.

During the ENVRIplus meeting in Zandvoort, Netherlands during May 2018, the task leader presented the resulting work to the participants and requested final comments. After the deliverable was commented upon, the document had been modified accordingly and submitted to the internal and external reviewers prior to the submission to the ENVRIplus head office.

1.4 Structure of this document

The document aims at easing the reader’s walk through the presented information.

Chapter one, introduction, shows the background and explains the necessity of this document. It describes grand environmental challenges and consequent necessity in advanced environmental measurements and technologies. It positions the work in the current landscape, explains methodology of work and structure of the document.

Chapter two deals with the technologies for atmospheric measurements, such as measurements of GHG and Aerosols parameters. This chapter analyses the strengths and weaknesses of the technologies, and identifies main providers. Described technologies represent those that are mostly valued by scientists and that are the most wanted or expected to become available on the market in the nearest future. Similar structure is accepted for the chapters three, four and five, corresponding to the measurements of land biosphere, marine, and solid earth parameters.

Each of the chapters two-five is complemented with the section of market overview, where authors talk about main market trends influencing the development of corresponding sensors and main driving forces for such development.

Chapter six describes the on-going development of the new platforms for environmental measurements. Among those are unmanned autonomous vehicles for atmospheric, biosphere and marine measurements as well as wireless sensor networks.

Chapter seven is specifically dedicated to the issue of energy supply, which is a critical issue for the measurements performed in the remote, hard-accessible areas. It describes various means of energy supply, such as solar panels, wind and water turbines, fuel cells and others.

Chapter eight discusses the place of research infrastructures on the technological market. This chapter demonstrates the connections of research infrastructures with the other market players, such as individual researchers, SMEs, large companies and grant holders. It addresses traditional and innovative business models and societies interested in development of new sensors.

Chapter nine gives an overview to the meeting of ENVRIplus participants with the industrial producers of environmental sensors in Grenoble (18-19 May 2017) in order to underline the strong dedication of environmental RIs to the establishment of strong relations with the market players.

Finally, chapter ten provides the final conclusions. It summarizes the trends of technology and market developments, the possible applications of sensor technologies.

It also refers to the Annex 1 table, where authors show the possibilities of cross-utilisation of sensors by various research infrastructures, thus underlining similarities of RIs in the field of technologies.